A Decompositional Proof Scheme for Automated Convergence Proofs of Stochastic Hybrid Systems

نویسندگان

  • Jens Oehlerking
  • Oliver E. Theel
چکیده

In this paper, we describe a decompositional approach to convergence proofs for stochastic hybrid systems given as probabilistic hybrid automata. We focus on a concept called “stability in probability,” which implies convergence of almost all trajectories of the stochastic hybrid system to a designated equilibrium point. By adapting classical Lyapunov function results to the stochastic hybrid case, we show how automatic stability proofs for such systems can be obtained with the help of numerical tools. To ease the load on the numerical solvers and to permit incremental construction of stable systems, we then propose an automatable Lyapunov-based decompositional framework for stochastic stability proofs. This framework allows conducting sub-proofs separately for different parts of the automaton, such that they still yield a proof for the entire system. Finally, we give an outline on how these decomposition results can be applied to conduct quantitative probabilistic convergence analysis, i.e., determining convergence probabilities below 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition of stability proofs for hybrid systems

The verification of hybrid systems, encompassing both discrete-time and continuoustime behavior, is a problem of rising importance. Hybrid behavior occurs wherever a digital system, operating in discrete time, interacts with a real-world environment, which evolves in continuous time. One desired property of hybrid systems is global asymptotic stability. A globally asymptotically stable system c...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

A Study of Decompositional Veriication of Hybrid Systems a Study of Decompositional Veriication of Hybrid Systems Simin Nadjm-tehrani

This paper is a study of decompositional proof techniques applied to the ver-iication of a model of a real world hybrid system, an aircraft landing gear. We present a formal description of these techniques (taken from Halwbachs et.al. 5]) and look at two ways of applying them. We discover, and correct , a aw in the theory, but conclude ultimately that when dealing with a plant-controller combin...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009